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Environmental Effects on Nano-Wear of Gold and KBr Single Crystal 

 

Megan Pendergast 

 

ABSTRACT 

 

  In order to successfully incorporate the tremendous possibilities of nanoscale 

applications into devices and manufacturing, significant studies need to be conducted of 

the properties and mechanics of materials of this small scale.  In this thesis, the effect of 

repeated scanning of KBr, aluminum, and gold was studied by using a nanoindenter and 

Atomic Force Microscope (AFM) in varying environments.  Additional research was 

performed to study the environmental effects of gold film scratching using a Taber 

Shear/Scratch Tester.   

 Scanning of KBr single crystal surface in air with a diamond tip in the Hysitron 

Triboindenter formed surface ripples 100 nm high, 1 micron apart. It has been observed 

that the nanoripple’s initial height and period increase with the number of repeated scans.  

The surface ripples form perpendicular to the scanning direction, beginning at the bottom 

of sloped samples and working their way up the entire scan area. The addition of water to 

a wear experiment on gold film produced considerably deeper wear areas than its ambient 

air counterpart in both scanning machines.  Scratch testing with a conical diamond tip of 

77 m radius with 125 g normal load also produced deeper wear tracks in water than in 

ambient air conditions. 

Several mechanisms may be responsible for the ripples formation, including 

dislocation dynamics, chatter, piezo hysteresis and others. Most likely there is a 
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combination of effects, with a clear differentiation between nanoripple’s origination and 

propagation. Mechanisms responsible for rippling, including system dynamic response 

and stick slip behavior are investigated. Topography modification appears to be the main 

result of ambient wear tests at the nanoscale, whereas much higher wear rate and 

nanoripples are observed in water.  It is possible that this moisture is assisting grain 

fracture and pull off.   
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CHAPTER 1 

INTRODUCTION AND NANOSCALE RESEARCH MOTIVATION 

 

1.1 Nomenclature 

 Unless otherwise specified, the following nomenclature is used in this thesis: 

H – (Pa) Hardness 

E – (Pa) Modulus of Elasticity 

P – (N) Load 

V – (m
3
) Volume 

x – (m) Distance 

s – (unitless) Static coefficient of friction 

p – (unitless) Ploughing coefficient of friction 

R – (m) Tip radius 

Pa) Shear strength 

p – (Pa) Material flow stress 

J/m
2

Work of Adhesion 

 

1.2 The Growth of Nanoscale Applications 

As the forefront of technology pushes towards miniaturization and the boom of 

nanoscale applications takes hold across the world, research in this area also must 

accommodate the testing scale [1].  Estimated costs in the U.S. attributed to friction and 

wear are upwards of hundreds of billions of dollars in macroscale applications.  

Estimated costs in smaller, nanoscale devices like Micro-electrical mechanical systems 

(MEMS) and Nano-electrical mechanical systems (NEMS) do not even exist because 
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these markets can not even develop until the debilitating issues with friction and wear in 

moving parts are solved [2].  There is a strong technological push for the lifetime of these 

devices to be significantly improved; friction and wear being two properties monumental 

to the device’s longevity [3]. 

 Friction and wear have been shown to change when comparing macroscale results 

to nanoscale. With reference to the generally small size of the components, bulk material 

physics does not dominate; instead, surface forces play the main role in determining 

characteristics of the material’s reaction [2].  The issue of stiction in MEMS devices at 

the nanoscale is a heavily researched example of this surface force domination. The field 

of nanoscale tribological testing, more specifically with  the Atomic Force Microscope 

(AFM) is still in its very early stages in terms of understanding and being able to quantify 

certain aspects such as tip geometry characterization and force calibration. These 

processes are not yet standardized so the field of nano tribology still remains largely 

unresolved [4].   

 

1.3 Wear 

Tribological processes like wear and friction occur in instances when sliding and 

or rolling contact occurs. Wear is the progressive loss of a substance from the surface of a 

body due to the relative motion between the surfaces. Wear can be chemical (corrosive) 

or mechanical, but an important often misunderstood fact is that wear is not a material 

property, rather an effect from an environment to which the material is being exposed [5]. 

This is why an appropriate method of wear testing is vital for specific applications. In 

describing wear processes, the main modes are sliding (absence of particles) and abrasive 
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(presence of particles).  These modes are not drastically stiff – for example sliding wear 

can generate debris and thus transform to abrasive wear.  Erosive wear is a subcategory 

of abrasive wear, where particles can be carried to the surface through a gas or liquid 

stream [6].  A common quantitative description of wear in terms of Volume (V) loss is 

defined below [7]: 

H

kPx
V                                                            (1) 

where P is the load, x is the sliding distance, H is the hardness of the material being worn, 

and k is a dimensionless quantity known as the wear coefficient.  This parameter is 

related to the coefficient of friction between the two materials. 

Macroscale wear testing is performed for many different reasons, some simply to 

obtain an idea of longevity and others to compare materials and different environments of 

use.  The difficulty is that field studies are not always feasible economically or 

practically.  Lab testing is the alternative to studying these conditions, but provides the 

risk of imperfect recreation; which is also an issue when testing at smaller scales [5].  

Traditional solutions to wear and friction at the macroscale include lubrication and 

bearings.  As the dimensional range of interest has shifted to the nano regime, these 

solutions are not applicable because of the enormous change in surface to volume or mass 

ratios [8].    

 

1.3.1 Wear Testing 

Wear tests can be generally categorized as nondestructive or destructive.  The 

nondestructive tests require immense knowledge in terms of materials’ structural 

properties and also the wear mechanisms involved.  The destructive type can be further 
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organized into single pass and multiple pass tests.  Single pass tests provide knowledge of 

the coefficient of friction, whereas multiple passes elucidate how this coefficient of 

friction changes over time.  In a typical wear experiment a hard material is repeatedly 

scanned over the tested material surface under load. Wear rate is expressed in terms of 

the removed material depth (or volume) as a function of normal applied load and number 

of wear cycles. A trench is left in tested material as a result of the wear process [9].  

After a wear test many options arise for interpreting the loss of material, depth of 

wear track and corresponding “wear rate”.  Surface topographical measures such as 

profilometry, AFM, optical microscopy, STM, and SEM are typical micro and nanoscale 

tools for interpreting wear.  A direct measure of the volume change or profilometry can 

be applicable to larger scale tests.  Other characterization can be performed, including 

electron diffraction, Auger electron spectostropy, or Rutherford backscattering. The idea 

of wear rate is rather complex and difficult to quantify, as wear is a constantly changing 

dynamic process, but provides useful knowledge of the friction behavior of the material 

[5]. 

 

1.4 Friction 

The simplest model of friction given as the Amontons-Coulomb friction 

represents the ratio of the friction force (F) to the normal force (N) through a parameter 

called the coefficient of kinetic friction [10]. 

 

N

F
                                                             (2) 
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The roughness theory of friction accredited to Tabor attributes the action of 

friction to asperities, and lower dynamic friction coefficients were explained by the 

asperities “jumping” over gaps between the surfaces.  However, this theory does not 

account for friction dissipation.  Tabor lists three factors that contribute to friction in 

unlubricated surfaces: 1) The real contact area, 2) the type and strength of the interface 

bond between the surfaces, and 3) the material’s properties in terms of shear and rupture. 

 

1.4.1 The Hertz Contact Mechanics Model 

The Hertz model for single asperity contact requires the knowledge of the contact 

area, which must be small compared to the dimensions of the body and the radius of 

curvature of the surfaces. The strain has to be small so linear elasticity is still valid, and 

only normal pressure is transmitted (no friction), and each body is represented by an 

elastic half space.  To assume that the tip is a perfect sphere, it requires that the contact 

area be proportional to the 2/3 power of the normal force.  Then friction force is 

proportional to the contact area (assuming no sample damage) and thus too is 

proportional to the 2/3 power of the normal force.  However, most friction versus load 

graphs obtained from sliding a sharp tip over the surface show a linear relationship, 

signifying that those tips cannot be modeled as perfect spheres and must have more than 

single-asperity contact.  The environmental effect on the validity of this contact has been 

shown by Putman in experiments with an Atomic Force Microscope (AFM) in 55% 

humidity in an environment flooded with N2 [1]. The ambient experiment showed a non-

linear relationship between friction and load, indicating a single asperity contact, where 

the N2 flooded vacuum experiment showed a linear relationship indicating multi-asperity 
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contact. This proves that environment plays a large role in the nature of friction, being 

either single asperity or multi asperity in different environments.  The question of why 

the ambient experiment produced single-asperity contact and the gaseous vacuum 

experiments did not was answered by the probability of ambient conditions always 

having a layer of moisture or hydrocarbons present on the surface of the tip and the tested 

material, essentially, “filling in” the tip roughness, yielding to a single-asperity contact.  

The opposite is true in the vacuum where surface roughness is not smoothed over by an 

adsorbed surface layer, producing the multi-asperity contact [1].   

 

1.4.2 Adhesion in Friction 

For small contacts, the adhesion of the surfaces plays a substantial role in the 

frictional values.  The model of Johnson, Kendall, and Roberts (JKR) predicts that these 

adhesive forces can provide deformation (therefore greater contact area) that is larger 

than what is predicted by the Hertz model. Their equation describes the contact radius (a) 

between a flat plane and a sphere with adhesion present [11]:   

                    
3

1

2
363 RRPRP

r
E

R
a               (3) 

where is the work of adhesion, or Dupre’s energy. R is the radius of the sphere, ER is 

the reduced modulus and P is the normal load.  
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This model provides a non- zero contact area at zero contact load, and a minimum 

stable load that corresponds to a non-zero contact area.  This minimum load is defined 

by: 

RP
JKRc

2

3
)(                                                      (4) 

Four years after the JKR model, the Derjaguin, Muller and Toporov (DMT) 

model was derived and used the same deformed contact profile as the Hertz model, but a 

higher load to account for adhesion. In this model, the contact area goes to zero at the 

pull off force: 

3

1

)2( RP
E

R
a

R

                                           (5) 

and  RP
DMTc

2
)(                                            (6) 

The JKR model also assumes that the area of contact is increased, a parameter not 

included in the DMT model [13].  Traditionally, the JKR model is suited for softer 

materials, large radii, and short range, strong adhesive forces while the DMT model is 

suited for harder materials, smaller radii, with long range adhesive forces [11]. 
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Figure 1.1.  Interaction forces versus distance for various models compared to an actual 

 interaction.  Reproduced with permission from the Journal of Adhesion  

 Science Technology [11].    

 

A visual summary of the models and their adhesion influences can be seen in 

Figure 1.1.  The Hertz model does not account for any adhesion, while the JKR model 

accounts for adhesion only within the contact zone.  The DMT model shows a longer 

range effect of adhesion.  The actual interaction would have a well corresponding to the 

work of adhesion,  

Lateral forces arise not only from friction but from the sample slope as well.  This 

provides the surface with a lateral force resulting from a component of the normal force 

[4].  The main differences when comparing large scale friction testing to a smaller scale 

is the single asperity contact.  For the AFM the tip geometry is well defined, and single 

asperity contact can be achieved, unlike for the large scale friction testing.  The standard 

linear relationship between friction force and normal load is not always applicable at 

small scales.  Some frictional force values can be measured at zero or slightly below zero 

in AFM measurements - comparable to the tip adhering to the sample, and the 

relationship is not always linear [10, 14].   An example of some of these measurements 

on various materials can be seen in Table 1.1. 
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Table 1.1.  Measured adhesion force in an AFM between SiN tip and different materials 

      [15-18].  

 

Material Adhesion force observed in AFM 

Polystyrine 2000 nN 

Gold 20 nN 

Human hair 25 nN 

Silica 15 nN 

Titania 12 nN 

 

 

1.4.3 Stick Slip Friction 

As the kinetic coefficient of friction is almost always lower than the static 

coefficient, it is rare that movement will be perfectly smooth; rather, some “jumpiness” is 

to be expected [19].  The stick is due to the higher static friction coefficient, and the 

observed slip is the slide of materials that happens at the lower kinetic friction 

coefficient. Figure 1.2 is a graphical representation of the two coefficients.  A general 

rule is that the quicker the motion, the less time the static friction is allowed to “stick”, 

and the motion appears to be less jerky [20].  This is why stick slip is observed mainly at 

lower speeds.  This is because the kinetic coefficient of friction is somewhat velocity 

dependent, and for different loads, and materials, there exists some critical velocity where 

stick slip is no longer noticeable. 
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Figure 1.2.  Relationship between friction coefficients and load. 

Every object has some degree of elasticity, including the indenter and AFM tips.  

Usually this is small enough that it is unnoticeable, but exists even at a reduced scale. 

In modeling this dynamic response, two equations of motion are needed; one to 

represent the “stick” (zero velocity), and another to represent the “slip”: 

 

)(
2

2

vFkx
dt

dx
c

dt

xd
m

ts                                         (7) 

where c is the damping coefficient, m is the mass of the oscillator, k is the cantilever 

spring constant, x(t) is the displacement of the tip, Fts( ) is the frictional force between 

the tip and sample during sliding [21]. 

In many poorly designed sliding instances, pile up is produced ahead of the 

motion, thus increasing the friction.  This continues to increase until a point of instability 

is reached and sliding occurs at the lower original friction value.  Something must yield 
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to cause this drop in friction, and this type of motion is called spragging [22].  This 

yielding of material during spragging is associated with plastic deformation [23, 24]. 

 

1.5 Instruments for Exploring Wear and Friction Properties 

1.5.1 Macroscale Wear Tests 

Wear at the macroscale is prominently relevant in engines, especially now when 

the global push is towards less fuel consumption requiring lighter, smaller parts.  

Working conditions of modern day engines require extreme temperatures, pressures and 

speeds.  There is a standard wear rate in engines of a few nanometers per hour, 

elucidating how much effort is put into reducing wear in these parts.  Due to the pressure 

of industry, investigation of wear in unknown regimes, sometimes at the micro and 

nanoscales is imperative to keep up with the technological advances [3].  There are no 

standards in wear testing for the AFM or Triboindentor environments - most wear testing 

is done at the macroscale, however, significant differences can be discovered when 

experimenting with wear on a smaller microscopic scale.  
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Figure 1.3.  A schematic of the Taber Abraser, a macroscale wear tester.  

Figure 1.3 displays a typical macro scale wear tester, similar to the commonly 

used “pin on disk” tester.  The smaller cylinders produce a wear track that can later be 

measured to obtain the wear rate.  The standard interpretation of results from most 

macroscale testing is a simple weight loss measurement with respect to the number of 

wear cycles.  

 

1.5.2 Contact Profilometry  

Profilometry is not so much a wear tester, but rather a wear analyzer.  Accurate 

representation of the surface and surface parameters can be achieved that are paramount 

in learning about friction and wear at these reduced scales. A surface profile is obtained 

by mechanically moving the stylus over the sample and recording a certain number of 

height points of the stylus along its movement [25]. 
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Most contact profilometers commonly provide 2-D views of just the profile, and 

the wear rate can be analyzed by integrating the wear track to determine total volume loss 

per number of scans.  Significant techniques have been employed in analyzing wear 

tracks with profilometry ensuring that only the wear area and not certain surface 

deviations are included in the calculation.  Jiang presents a valley seeking method that 

can be performed in the profilometer data analysis software to ensure that the area being 

integrated is the actual wear track or scar.  This new method finds the outer boundaries of 

wear scars using the projected area at the edge.  It is a valley seeking procedure because 

the slopes are compared to find where successive slopes are all negative.  This new 

projected area can be integrated to find the area within the boundaries [26]. 

 

 

 

Figure 1.4.  A representation of the analysis performed to accurately obtain the limits of 

       the wear scar.  

  

An Hmax value can be chosen in the analysis software as a critical low point based 

on the surface roughness and step size between slopes analyzed.  This avoids the situation 

of local asperities or general surface variation causing successively negative slopes and 

being chosen as the limit of the wear area.   
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However, optical profilometry has become the new standard in profile 

measurements, solving the problems of speed, stylus wear, and vibration isolation.  

Contact profilometry is still the best method in measuring curved surfaces or reflective 

surfaces that could scatter a laser. Contact profilometry is also suited for sharp ridges in a 

sample, but physical dimensions (stylus radius) can hinder certain scratch depth analysis. 

[27, 28].  

 

1.5.3 Scanning Probe Microscopy 

Scanning Probe Microscopy (SPM) has revolutionized the field of 

nanotechnology, as it provides three dimensional quantifiable images of nano structures. 

SPM imaging is a very popular imaging technique because of its inherent high resolution, 

ability to work in an ambient air and fluid environments, and the simple sample 

preparation. 

 

1.5.4 The Atomic Force Microscope 

The Atomic Force Microscope is also a recent player in the SPM world, being 

invented in 1985, it provides significant advantages over other methods, such as scanning 

tunneling microscopy, which require a conductive sample.   

The principle of AFM operation lies in the reflection of a laser beam off the 

cantilever that supports the tip which is usually made of silicon, silicon nitride or 

diamond.  The laser beam is reflected from the tip, and the angle of reflection changes 

with the position of the cantilever.  The friction between the tip and the surface of the 

material causes torque that can be measured by the laser beam reflection.   



www.manaraa.com

 15 

 

 

Figure 1.5.  A schematic of contact AFM scanning. 

Many factors influence the behavior of the tip and the surface; including the 

environment (humidity) and the sample preparation [29]. Contact mode requires the 

repulsive force between the tip and the surface to remain constant.  The AFM tip is 

modeled as a perfect sphere making the contact with the sample material single-asperity 

[1].  Repulsive forces are electrostatic in contact mode [4]. 

There are disadvantages of using AFM  in that it is difficult to get a proper tip 

geometry calibration, so the data is mostly qualitative. This qualitative nature is also a 

problem in getting an accurate idea of the force applied to the sample.  In an AFM, forces 

are inferred from the measured deflection of the cantilever, while a nanoindenter 

performs force controlled measurements. However, when compared to scanning capable 
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nanoindenters, AFM possesses significant advantages – it allows lower loads, and has a 

better positioning accuracy.   

Imaging in AFM is often performed in the tapping mode, especially on biological 

samples because the contact mode will destroy and remove the delicate molecules [30].  

The versatility of the AFM lends it to be applicable to many different kinds of samples 

and many different testing regimes, including biology and MEMS, however this 

versatility brings with it complications that need to be addressed to ensure proper data 

interpretation.  One instance of this is tip characterization [4].  A difference in the size of 

scanning tips is an important parameter, especially in contact mode AFM.  Experiments 

performed on NaCl with a sharp conical tip and a larger blunter tip that contacts about 

200 atoms were seen to produce strikingly different results in friction regimes.  The 

sharper tip digs into the surface, and then the temperature is brought to near the melting 

temperature, the friction levels drop, a phenomenon attributed to “ice skating” where a 

molten region is formed.  The blunt tip merely grazed the surface, but saw an increase in 

frictional values once the temperature was raised [3].  Without accurate knowledge of tip 

geometry, the properties of friction and wear can not be thoroughly understood, since 

they are contact dependent. 

 

 1.5.5 The Hysitron Triboindenter 

 Wear testing on a smaller scale, at the micro and nanometer regimes, requires a 

thorough understanding of the equipment to separate thermal, feedback, and imaging 

artifacts from actual physical properties.  
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 The Hysitron Triboindentor is a versatile nanomechanical characterization 

machine that uses a patented three-plate capacitive transducer which serves as an actuator 

and sensing element of the machine. The tip that is used for testing is also used in 

mechanically scanning the surface.  This increases the positional accuracy of the 

experiment by avoiding the need for a transition from optics to testing tip. In terms of 

stability, the Hysitron nanoindenter actively damps vibrations below 200 Hz  using 

piezoelectric vibration control stages and passively damps those above 200 Hz.  The 

Hysitron tool is enclosed to minimize thermal gradients and passively damp acoustic 

vibrations, which can significantly affect measurements at such a small scale. 

 The possibility of thermal drift effects seen when large currents are needed is not 

a factor with the Hysitron transducer because it is actuated electrostatically.  The 

displacement is measured by a change in capacitance, while the force is being applied.  A 

three plate capacitive transducer is attached to the piezo to provide imaging capabilities.  

A voltage is applied to the bottom plate of the capacitor, which electrostatically pulls the 

center plate down.  This transducer also monitors the force by using the capacitance 

sensor of the transducer.  This is essentially the “feedback” for system control.  

 

Figure 1.6.  A cross-section of the Triboindenter transducer. 
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The 3 axis piezo scanner also provides the fine scale positioning of the tip (Figure 

1.7).  The piezoelectric material changes its shape in response to a voltage applied to it.  

When voltage is applied to one side, it lengthens, which causes the scanner to bend to the 

side.  It is divided into four quadrants that control the +X, -X, +Y, and –Y directions.  

The large top solid piece controls the +Z and –Z direction.   

 

 

Figure 1.7. The Hysitron piezo scanner.  The 4 quadrants for X and Y axis control  

        and upper solid piece for Z movement control are labeled. 

However, the piezo is afflicted by negative side effects such as hysterisis and 

creep.  In an ideal world the piezo would deform linearly with respect to the voltage 

applied.  In wear measurements, the piezo is forced to scan topography through hundreds 

of scans.  This constant change in voltage increases the probability that the mechanical 

response of the scanner will lag behind the voltage applied.  Creep becomes a 
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nonlinearity issue when the voltage applied is suddenly and drastically changed. A 

physical example of the voltage suddenly changing would be a step height on the surface 

of a sample. If this occurs, the piezo scanner will not be able to retract instantaneously, 

and will overshoot and the force will possibly “ring” until contact is found again.  These 

issues are usually apparent from looking at the profiles of the scan line while scanning. 

Large offsets in the scan lines from the forward and reverse scan lines give an indication 

of hysterisis, and “ringing” can be seen on sharp step heights in the scan lines as well.  

The tip geometry and partially the feedback loop also produce variations in profile 

images of the sample depending on which direction scanning is taking place.  Figure 1.8 

shows a schematic of the tip movement and corresponding profile that would be obtained 

for the given scan direction over a sample step height.  Actual data of profile views can 

be found in Chapter 2. 

                    
Figure 1.8. The directional dependence of the obtained profile due to the tip geometry. a) 

                   a schematic of the tip approaching a step height from the left and b) the 

                   corresponding profile view. c) A schematic of the tip approaching a step drop 

                   from the right and d) the corresponding less accurate profile. 
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Figure 1.8.  (Continued) 

The Hysitron operates using an adjustable Proportional, Integral, Derivative (PID) 

controller that determines how fast the scanner reacts to changes in the sample 

topography.  Appropriate settings are essential because if for example the integral gain is 

too high, the tip may oscillate, or in the opposite regime, if the integral gain is too low, it 

will not react quickly enough and wear of the sample can occur when it comes into 

contact with higher peaks on the sample surface [31]. 

 

1.6 Surface Patterning: Ripples 

Once scientists and researchers learned how to manipulate materials at the 

nanoscale, surface patterning and characterization became an exciting field with 

unlimited texture possibilities.  With tiny nanostructures having the possibility of 
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influencing drug delivery, MEMS devices, and countless other facets of technology, this 

surface manipulation is receiving a lot of interest. 

 

1.6.1 UHV AFM Ripples 

It has been shown originally in the ultra-high vacuum (UHV) of 10
-10

 Torr that 

repeatable scanning of the KBr single crystal (100) surface in an AFM with a silicon 

nitride tip causes surface reconstruction of wavy patterns forming perpendicular to the tip 

motion, coinciding with the 011  KBr crystallographic direction.  This research was 

inspired by similar UHV AFM experiments performed on KBr and Al single crystals by 

another group [31, 33].  In those experiments, the AFM cantilever tip repeatedly moved 

along a single scan line, which resulted in periodic pile-up structures forming around that 

scan line. Repeatable square surface imaging results in nanoripples forming 

perpendicular to the scanning direction. Figure 1.9 shows the InSb sample after 100 scans 

and a normal load of 34 nN. The distance between ripples was found to correlate with the 

tip radius. When cleavage steps were present on the sample’s surface, they distorted the 

original perpendicular ripples alignment, but eventually the ripples eroded and became 

perpendicularly aligned. When these same experiments were reproduced using a regular 

AFM, outside the vacuum, no ripples could be produced. This may be associated with the 

fact that UHV-prepared surfaces have higher surface energies than surfaces with 

adsorbed species in ambient environment.  Our research has made an attempt to produce 

these ripples both in the Hysitron and AFM in the ambient environment. 
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Figure 1.9.  a) Contact mode AFM image of InSb surface obtained in ultrahigh vacuum. 

 Square outlines the scan area; b) The same area after 100 repeated vertical 

 scans in ultrahigh vacuum [30]. 

 

1.6.2 Similarities in Nature 

Ripple pattern can be observed at the macroscale in nature in instances like sand 

dunes, ocean floors, cumulus clouds, and even the surface of Mars.  

 

Figure 1.10.  Macroscale ripples in nature. a) Example of sand dune ripples and  

                     b) 100 m high ripples on the surface of Mars.   
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The sediment movement on the ocean floor and cross beds formed by high 

velocity wind in sand form the familiar ripple pattern at the macroscale.  Sand dune 

ripples are formed when the wind tries to pick up loose sediment but only carries them a 

short distance before they begin to pile up on each other forming ripples perpendicular to 

the fluid flow as observed in the nanoscale ripples as well.  The wind velocity increases 

in the low points, having enough energy to pick up more sand particles, and slows down 

over the steep incline of a ripple, and drops some particles, thus increasing the 

wavelength of the ripples and self propagating the pattern [34].  

 

1.6.3 Ion Beam Ripples 

Focused electron and ion beams can cause surface reconstruction and form 

ripples, which periodicity depends on the incidence angle, the beam energy, and 

residence time [35]. Experiments where an ion beam was blasted at a glass surface 

produced ripple patterns at the nanoscale.  These ripples formed perpendicular to the 

beam of ions that bombarded the surface except when defects in the glass were 

encountered, and the ripples oriented parallel to the defect [36].   
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Figure 1.11.  Example of ripples caused by a focused electron beam [37]. 200 nm Z 

range. 

 

1.6.4 Polymer Ripples 

Another instance of ripples produced in the AFM has been achieved in thin 

polymer films [35].  Ripples formed perpendicular to the scanning tool direction and 

were 10-100 nm in wavelength.  Polystyrene was scanned at the normal load of 17 N, 

and the ripples formed were aggregate groups of polystyrene molecules.  Over time with 

continuous scanning of the surface, the size of the ripples, or “bundles” grew in size. The 

ripples formed oriented themselves perpendicular to the tool tip direction, even if the 

sample was rotated after the surface had produced ripples in a certain direction. 

Experimenting with ranging molecular weights of polystyrene produced no change in the 

12 m square ripple pattern in terms of the wavelength and pattern structure. 
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1.6.5 Coelctrodeposition Ripples 

Experiments with coelectrodeposition using a solution of Ag and Sb resulted in 

light and dark patterns formed on the electrode [36]. The ripple patterns formed were 

very similar to the patterns observed on KBr and InSb samples during wear experiments 

and large scale ripple patterns on sand dunes and ocean floors.  When the element 

distribution throughout the pattern was expounded, the crystals making up the pattern 

were strikingly segregated within the patterns; the lighter portions were rich in Ag, while 

the darker patterns contained more Sb, and O.  The propagation of the ripple patterns is 

suggested to be due to convection, where the flow is driven by buoyancy differences 

within the ions. Other physical factors might be at work in the propagation of these 

ripples. Periodic patterns are also commonly observed in fracture of thin films and 

multilayers, both in tension and compression [37]. 

 

1.7 Environmental Effects in Wear Testing 

Research in material behavior in varying environments, especially lubrication 

performance, is a constantly expanding field, particularly with the growth of the thin film 

industry.  The performance of thin films in the presence of friction in many different 

environments is vital for their reliability.  At the macroscale, most wear testing preformed 

in the presence of fluids centers around engine cooling and refrigerant viscosity.  These 

macroscale tests are important because the best lubrication that in return yields the least 

wear and friction means better fuel economy, which in today’s world is a goal every 

manufacturer is striving to achieve [38].  Most surfaces are covered by a few molecules 

of other substances attracted to the surface. Water is a common molecule on the surface 
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of materials because of its sheer abundance in the ambient environment, and its ability to 

condensate [39].  The wear experiments carried out in the presence of water were all 

performed on gold samples, a highly researched material not restricted to technological 

applications like electrical connections, but  also having great importance in the dental 

industry as well [40].  As dental technology and hygiene has increased over the past 100 

years, people are much more likely to have their original teeth for a longer period of time.  

In this situation, tooth wear and degradation becomes an issue, and studies of natural 

tooth enamel materials, gold, and other restorative materials are important [41]. 

Wear testing of gold in varying environments has important implications since 

gold is widely used for its resistance to corrosion more so than its conductivity. Wear 

testing in water adds another degree of complexity, as the wear mechanism can evolve 

differently, as was seen on polymer wear tests by Prehn [42].  Polyetheretherketone 

(PEEK) matrix polymer composites showed abrasive wear in a dry environment, while 

erosive wear was present in water wear experiments.  A changing wear mechanism is not 

just a phenomenon attributed to polymers, but is also observed in steel, aluminum and 

other metals [42]. 

PVD sputtered gold approximately 150 nm thick on (100) silicon substrate was 

tested by using a microtribometer for its frictional values.  Tested at loads of 1-20 mN, 

using a steel cantilever of 169 N/m stiffness at a relative humidity of 33 and 84%, the 

coefficient of friction of gold was not found to change from 0.2.  This was attributed to 

gold being a hydrophilic material, which already reached its saturation point.  The 

authors summarized that capillary forces develop when a material is saturated increasing 

the frictional values [41]. Mica, a common substrate material that is also extremely 
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hydrophilic, has been seen to exhibit a strong dependence of frictional values on humidity 

[14].  Experiments performed on NaCl showed a distinct increase in frictional values 

above 45% humidity in contact AFM scanning.  It was concluded that a water surface 

monolayer was essential for increasing the frictional values [43]. 

The pH of a liquid has been shown to have a linear relationship with frictional 

values at the nanometer scale as well, where increasing pH levels lowers the lateral force 

observed. Silicon was tested in a fluid cell AFM with NaCl with varying levels of HCl to 

adjust the pH, and scanned over a single scan line.  The lateral force was found to be 

independent of velocity, showing that the driving force was frictional as opposed to 

viscous [45]. 

A model of the kinetic frictional force used an equation from Isrealivhvili in 

describing a frictional force in the silicon pH experiments : 

 

F= C1A+C2P                                                         (8) 

 

where C1 is the mutual adhesion of the two surfaces, A is the adhesion hysterisis or 

energy dissipated, C2 is the surface roughness and P is the  applied load [45].  

 

1.8 Scratch Testing 

 Abrasive wear resistance generally correlates with a material’s hardness so the 

hardness test became commonplace for evaluating a material’s abrasive wear resistance.  

However, this correlation was found not to hold true for thin coatings [46]. Additionally, 

many common wheel based wear testers are too severe for coatings. Scratch testing can 
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provide a better evaluation of abrasive resistance of a material that is deposited as a thin 

coating.  In many small scale applications, a thin gold film is used as an interconnect for 

electrical devices, therefore a scratch test can be a valuable experiment in evaluating gold 

wear properties.  Technology continually strives to achieve smaller and smaller products, 

and this pushes coating thickness to smaller and smaller values.  However, these coatings 

are still expected to provide the same tribological performance [47]. Much of scratch 

testing is devoted to providing information about a coating’s practical adhesion, but wear 

resistance is equally significant [48]. 

 In terms of quantifying a material’s scratch resistance, several definitions have 

been proposed, such as dynamic hardness, tangential hardness, and specific grooving 

energy.  More recently an ASTM scratch standard was produced; however problems still 

lie in the reproducibility and definitions of those terms [49].  To apply the definitions for 

scratch hardness, most often the contact area needs to be calculated, a difficult task if 

working with a material that can viscoelastically recover a large percentage upon 

unloading [50].   

 A scratch test is most often performed by a diamond tip scratching along the 

surface with a constant normal load. The depth of scratch is then analyzed to provide 

information about the material’s scratch resistance.  Another method useful in very thin 

coatings (approximately 5 nm or thinner) is to constantly ramp up the normal load until 

breakdown of the coating occurs.  This method is beneficial when instrument resolution 

becomes a factor in measuring scratches 5 nm or less in depth.  When the coating is 

penetrated, that load is defined as the critical load [51-53].  The critical load is 

determined through the frictional force.  When the frictional force becomes irregular, it is 
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attributed to breakdown of the coating.  This method is fairly reliable, but more recent 

methods involve using a conductive carbide blade to measure the contact electric 

resistance (CER) at the cutting point.  When this value is zero, if the tip scratches through 

to a conductive material below, it corresponds to the critical load of the coating.  Scratch 

testing with the ramped normal load method becomes complicated because the underlay 

or substrate can be a significant factor in the coating’s scratch resistance.  The deeper the 

scratch, the more the properties of the substrate influences the scratch resistance.  This 

composite interaction is always measured during scratch testing using ramp loading 

because the scratch goes to the point of breakdown, involving the underlay [43]. 

 It is generally accepted that much of scratch frictional forces come from a 

combination of ploughing and adhesive components.  For reciprocating scratch test, it has 

been shown that the plastic ploughing component wanes off, leaving the majority of 

frictional force due to adhesive friction until coating delamination [54]. 

 Not only can coating adhesion and wear resistance information be obtained from 

the scratch test, but information about the critical plastic strain resistance can also be 

gained [55].  It has been difficult to experimentally determine a strain to failure value, 

because the strain fields in a wear situation are different from those in conventional tests 

like tensile, compressive and torsion.  Using an acoustic emission (AE) sensor, the point 

of microfracture during the scratch can be obtained correlating this moment to the 

maximum plastic strain the material can withstand. 
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1.9 Objectives 

This research was aimed to study the rippling of materials at the micro and 

nanoscale, and additionally replicating this rippling outside of the UHV environment.  

Special interest was paid to varying environmental conditions and observing the effect on 

wear and pattern formation.  Varying testing equipment and utilizing different testing 

methods was also performed to obtain conclusive correlations of material’s response to 

wear testing in varying forms.  

 This introduction has reviewed the basics of wear and friction, including some 

relevant issues like adhesion and stick slip friction.  Observations of small scale 

patterning in other areas of research have been discussed, as well as humidity effects on 

nanoscale wear testing.  Careful attention has been paid to the variety of different wear 

testing methods and their relevant issues relating to small scale materials. 
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CHAPTER 2 

 

NANOSCALE PATTERN FORMATION   

 

2.1  Introduction 

 

Due to the inherently complex and constantly changing nature of the wear 

process, a standardization of testing does not exist.  In the following experiments, 

different wear testing techniques were employed to gain an understanding of the 

material’s behavior under such conditions.  A relatively common microscale wear test 

technique is creating a “wear area” (Figure 2.1).  This square indentation is where the tip 

scanned the surface of KBr under a constant normal load.  This technique is useful in 

acquiring information on wear over an area, and tests are relatively simple to set up in a 

raster scanning machine.  Images can also be taken after and during scans, so progressive 

wear information can be obtained. 
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Figure 2.1. a) KBr sample surface before a wear test b) After 10 scans at 2 N normal 

                   load a wear trench is formed. Z scale is 300 nm. 

  

Initial experiments were performed on KBr single crystal, a transparent ionic 

solid. This material was chosen to reproduce experiments performed in the Ultra High 

Vacuum Atomic Force Microscope (UHV AFM), where KBr was seen to ripple during 

scanning (Figure 1.9) [30]. The goal of these experiments was to bring observed results 

seen in the UHV system out of the vacuum and into the ambient environment using the 

Hysitron Triboindenter.  Single scan line pile up ripples were replicated outside of the 

vacuum and studied as well [8].  Insights into nanoscale patterning phenomenon is 

extremely valuable especially as technology pushes into the small scale regime. It is of 

interest to study these ripples and their formation because of their relevance to the 

growing field of research in surface patterning.   

 

2.2 Experimental Details 

Subsequent experiments reproduced the rippling effect in ambient laboratory 

atmosphere using the Hysitron Triboindenter.  The tool is capable of repeated surface 
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scanning, producing AFM-like images.  It can scan up to 80x80 m
2
, making 256 passes 

of an area with a rigidly supported diamond tip. Scanning experiments were performed 

with a normal load of 2 N on freshly-cleaved KBr single crystal surfaces with a 

Berkovich diamond tip of 100 nm tip radius in an ambient lab environment. This 

experiment produced ripples after 20 scans of the 10x10 m
2
 area (Figure 2.2).  The 

ripples formed perpendicular to the tip motion direction, as observed in the UHV AFM 

ripples as well. 

Single scan line experiments were performed on KBr in the ambient environment 

using a Park Scientific AFM with a silicon nitride tip with a 10 nm radius. The scans 

were performed in contact mode and scan parameters such as normal load, scan speed 

and length of scan were varied.  Results of the scanning produced a ripple pattern in the 

pileup structures of the scan line.  These were inspired by other tests preformed in the 

UHV AFM [8].  In those experiments the ripples grew in width correlating to an increase 

in normal load.  Additionally, the environment in which the KBr was cleaved was found 

to significantly affect the morphology of the resultant ripples.  KBr cleaved in the 

vacuum produced narrower ripples than the KBr cleaved in ambient conditions then 

moved to the vacuum for scratching.  This environmental dependence elucidates the 

significance of reproducing the single scan line ripples in the ambient environment for 

experimental significance.  
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2.3 Pattern Formation Results 

2.3.1 Potassium Bromide Rippling 

Figure 2.2a is the original cleaved KBr single crystal surface, and Figure 2.2b 

presents nanoripples formed after 20 scans of the area in Figure 2.2a. In comparing 

Figure 2.2a and 2.2b, the initial cleavage steps in the KBr sample can be seen very 

sharply in Figure 2.2a, and then eroded in Figure 2.2b.  These results parallel the UHV 

AFM experiments on KBr where cleavage steps were worn down during the scanning 

experiments. A movie constructed of single image scans of KBr single crystal 

reconstruction due to scanning at 1 Hz can be seen online [42]. The scan size is 4x4 m
2
 

which is the area the tip scans over; the effective area that is wear tested.  A topographic 

image of a rippled KBr surface can be seen in Figure 2.3a.  The subsequent profile 

(Figure 2.3b) displays the height and width of the ripples. 
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Figure 2.2.  a) Original KBr single crystal topography surface image showing scratches 

                   and cleavage steps; b) the same surface after 20 scans with a Berkovich 

                   diamond tip (100 nm tip radius) with a 2 N normal force. The arrow shows 

                   the scanning direction. 
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Figure 2.3.  a) Shows a 1.5 square m scan of KBr displaying the 1 m square wear area 

                    after it had been scanned; b) topographical vertical cross-section of a).  

                    Courtesy of Bartosch Such, Jagiellonian University, Krakow Poland. 

 

 Ripples initiate at cleavage steps, and Figure 2.4 is an example of this.  The lines 

are drawn to show where the cleavage steps are located, and how they correspond with 

the initiation of the ripple pattern. Original cleavage steps (2.4a) were located by 

inverting the image color, then transferring the pattern to Figure 2.4b. 
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Figure 2.4.  a) UHV AFM image of 1x1 m
2
 original KBr surface after one scan at 8Hz; 

                   b) the same area after 10 scans at 8Hz.  The black lines highlight the crystal 

                   steps that serve as ripple initiation sites.  

 

 

2.3.2 Single Crystal Aluminum Rippling 

 

Single crystal aluminum was found to produce the rippled surface pattern when 

scanned in the Hysitron.  Initiation of ripples took significantly more scans than in the 

KBr experiments.  Sample preparation of the Al crystal was polishing, however the oxide 

layer was intact during testing. 

 

 

 

b) a) 
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Figure 2.5.  a) Topography of Al single crystal before wear and b) nanoripples formed 

                   after 1000 scans. Z scale is 650 nm  

 

 The ripples in Figure 2.5b are oriented diagonally from the scanning direction, a 

feature also occasionally observed in KBr where surface features initially influence the 

ripple’s direction, but further scanning orients them perpendicular to the scanning 

direction.  Profile analysis of the Al ripples can be seen in Figure 2.6.  Comparing the 

relative ripple height, KBr ripples are much larger on the order of 2 m where Al ripple 

height is closer to 20 nm. 
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Figure 2.6.  Analysis of Al rippled area showing an average ripple height of 

                   approximately 20 nm. 

 

 

2.3.3 Gold Ripples   

 

Until the appearance of wear ripples forming on gold, the ripples had only been 

observed on single crystal materials.  This led to a theory that dislocations within the 

crystal are a possible cause of these structures.  However, in testing of sputtered gold and 

single crystal gold samples in the presence of water on the Hysitron and AFM, the similar 

rippled surface pattern appeared (Figure 2.7).   
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Figure 2.7.  Final image after 40 scans showing developed ripples scanned in the 

                   Hysitron. 

 

Single crystal gold experiments performed in the presence of water on the 

Hysitron initially produced common, “normal” wear areas with no pattern formation as 

can be seen in Figure 2.8. Scanning parameters were 10 N normal load and 2 Hz scan 

speed over a 10x10 m
2
 area for 25 scans. 
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Figure 2.8.  20x20 m
2
 single crystal gold surface - gradient (error signal image) is 

                   shown for clarity. 

 

 Continuing to scan the images shows the topography variations in the gold turn 

into ripple initiation sites as scanning progresses.  Figure 2.9 was scanned at the same 

parameters as Figure 2.8. 

 

  

 

 

 

 

 

3 m 3 m 

 

3 m 
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Figure 2.9.  Ripple progression on single crystal gold after a) 27 b) 30 and c) 36 scans. 

                   Long scanning direction was horizontal. 

 

After zooming out the scan size to obtain Figure 2.7, returning to scan the same 

10x10 m
2
 area initially deteriorated the ripples slightly, (Figure 2.10a) possibly due to 

the tip slight offset when returning to scan the same area.  As precise as an AFM is on 

such a small scale there is still a small degree of position variation, and this offset could 

disrupt the ripple propagation. The deterioration was not permanent because 5 scans later 

(Figure 2.10b), the ripples began to form again. 

 

 

Figure 2.10.  a) Scans showing the deterioration (smoothing) of ripples formed in Figure 

                     2.10 b) 5 scans later the ripples form again. 
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Unlike the KBr ripples, the single crystal gold ripples formed parallel to the scan 

direction.  Tests performed on 3 m sputtered gold in water on the Hysitron formed 

ripples perpendicular to the scan direction (Figure 2.11). The sample substrate was silicon 

and the thickness of the gold was determined through profilometry scans. 

 

Figure 2.11.  a) Wear pattern and b) Wear track of a gold film after 200 wear cycles at 10 

                     N normal load with a sharp Berkovich tip in water showing surface ripples. 

 

Not only were the ripples formed on the 3 m gold on the Hysitron, they also 

appeared while testing in the AFM as well. Figure 2.12 shows the ripples that appeared in 

the ambient environment in the AFM after only 30 scans of the 3 m sputtered gold 

surface.  The ripples are also aligned perpendicular to the long scan direction. 
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Figure 2.12.  Sputtered gold, 2 N normal load, ambient conditions: a) after 30 scans;   

                     b) after 50 scans; c) after 50 scans, 1x1 m
2
  AFM deflection image. 

 

2.3.4  Single Scan Line Rippling 

 

 In single scan line testing, where the tip is scanned repeatedly over the same line, 

Socoliuc et. al. observed rippling in the pile up structures of KBr (Figure 2.13) while 

testing in a UHV AFM.  The Socoliuc results were reproduced in an ambient 

environment using an AFM with a silicon nitride tip at normal load of 250 nN (Figure 

2.14). 

 

 

 
Figure 2.13.  Topography image of a 1 m long groove formed on KBr (001) after 512 

                     scans along the <100> direction, 26.2 nN.  Reproduced with permission  

                     from Phys. Rev. B [8]. 
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The cleavage steps on the KBr sample did not serve to disrupt the ripple 

formation as can be seen in Figure 2.14. The line was scanned at 250 nN normal load 

over a 2 m scan line at a speed of 7 Hz.  The line in Figure 2.14 was scanned for 6720 

passes.  The higher normal load (250 nN compared to Socoliuc normal load of 26.2 nN) 

was necessary to induce ripples, experiments at lower loads did not produce the ripple 

pattern. 

 

   
Figure 2.14.  Single scan line rippling of KBr in the ambient AFM.  The error signal  

                     image is often shown because it appears cleaner and easier to observe the 

                     surface ripples than the topography image. 

 

Not all single scan line experiments on KBr produced the pile up ripples.  Figures 

2.15 and 2.16 show experiments where varying the integral gain parameter affected the 

formation of ripples.  Keeping all other parameters the same as those before (normal load, 

number of passes, speed, scan size), but varying how closely the tip tracks the surface, 

produced drastically different results.  Below a gain of 0.3, no significant ripple structures 

formed (Figure 2.15, 2.16).  
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Figure 2.15.  a) Scan line taken at a gain of 0.1. b) The top line was scanned at a gain of 

                     0.1 and the bottom scanned at 0.3. 

 

 
 

Figure 2.16.  The top line was scanned at a gain of 0.2, and the bottom scan was taken at 

                      a gain of 0.3. 

 

 Several experiments with the gain setting at or above 0.3 consistently produced 

the pile up structures (Figure 2.17).  These experiments were performed at a normal load 
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of 500 nN and 7 Hz scanning frequency.  No ripple patterns were produced at lower gain 

settings, even when the experiment was carried out for a larger number of scans. 

 
 

Figure 2.17.  Relationship between the number of ripples formed in the pile up structure 

                     and the integral gain setting. An apparent threshold to ripple formation  

                     occurs at around 0.3 gain. 

 

The gain dependency of ripple formation was not a factor if the normal load was 

increased significantly.  In testing at 2 N normal load over a 3 m scan line, the tip dug 

into the sample producing ripples in the trench; where the tip scans, but not in the pile up 

structures, where the material is plastically displaced (Figure 2.18).  The sample was 

tested for the same number of scans (6720) as the previous experiments. 
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Figure 2.18.  KBr sample tested at 2 N normal load showing the ripples formed in the 

                     trench.  The sample damage in the center of the image is due to the initial tip 

                     placement when it finds contact with the sample. 

 

 

2.4 Ripples Analysis and Discussion 

  

2.4.1 Slope Effect on Ripple Formation 

 

Another interesting property of the ripples is their tendency to form at the bottom 

of a horizontal slope.  If there is a topographical slope to the surface area, the lowest 

point in that area is where the ripples will initially propagate from, as can be seen in 

Figure 2.19 and Figure 2.20.  This “slope dependence” has also been seen in rippling 

experiments performed in the UHV AFM, indicating that this effect is not seen solely in 

one environment, but is a function of the ripples formation [30].  When the tip encounters 

a sloped surface, the piezo can not react instantly to the topographical change, and is 

subject to acceleration down the slope, and then a quick deceleration when encountering 

the specified edge of the image, and is forced to travel back up the slope.  This response 
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time in the piezo could cause a “digging in” of the tool tip into the sample when it is 

quickly decelerated at the bottom of the slope.   

 
 

Figure 2.19.  KBr early ripple propagation after 10 scans using Hysitron Triboindenter. 

                     The arrows indicated the direction of scanning 

 

 
 

Figure 2.20.  A 300 nm tilt over 12 m showing the ripple patter propagation at the 

                     bottom slope of the sample.  
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2.4.2  Piezo Hysteresis 

Piezo hysteresis can cause a phase shift that would be seen in the tool tip 

movement. This movement is an elliptical path that would drive the tool into the sample 

deeper on the retraction of the elliptical shape.  This difference in depth of the tool tip is a 

difference in energy required to move the tip.  In this way the vibrations are sustained 

through the periodicity of the force in the tip motion over the surface [47].  In addition, 

piezo vertical motion time response is different, as it is easier to extend the piezo than to 

retract it. Both UHV AFM and Hysitron TriboIndenter produced similar qualitative 

results. AFM has a compliant cantilever, whereas a rigid diamond tip is used in the 

nanoindenter, although both instruments employ open feedback piezo for scanning.  

To further study the piezo effects in the Hysitron nanoindentor, scan lines from 

the tip tracking the sample surface were considered.  This data can be seen in Figure 2.21.  

The first image (Figure 2.21a) is taken at a scan rate of 0.1 Hz, and the bottom image 

(Figure 2.21b) is taken at 3 Hz.  There is a drastic difference in the amount of horizontal 

shift with regards to the scan rate.  When the speed of the tool tip increases, the response 

time of the piezo can not accommodate the surface feature change and the corresponding 

overshoot is seen in Figure 2.22a.  The feedback of lateral motion position is kept at open 

loop during all experiments, also those in UHV AFM. This is not the case for the normal 

force feedback, which is controlled by the proportional and integral gain settings in a 

closed loop system. The piezo is made of Barium Titanate oxide and it is “easier” for the 

piezo to extend than contract, which is a piezoelectric property of this material. This 

effect is displayed below in terms of the large shift when the tip is traveling up the slope.  

This tendency of the tool tip to overshoot and undershoot the actual surface topography is 
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most likely responsible for the ripple propagation.  Not only does is continue to “dig 

deeper” into the troughs and slopes, but this motion also serves to increase the periodicity 

of the ripples, an effect observed on all samples that produced ripples.   

 

 
 

Figure 2.21.   Scan lines taken during wear experiments on KBr show the Hysteresis 

                      effect heightened by scan rate a) 0.1 Hz b) 3 Hz. 

 

 The tip geometry is an inherent source of shift in the forward and backward lines.  

The forward and reverse scan lines can only ever match up to the diameter of the tip in 

contact.  Figure 2.21a is an example of the horizontal offset of the forward and reverse 
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scan lines due to the tip geometry.  Figure 2.21b shows a larger shift, due to the larger 

role of dynamics in the tip motion. 

 

2.4.3 Inertia Effects 

 

 The inertia of the tip also plays a significant role in the path of the tip in its 

forward and reverse motion.  In Figure 2.22a, the blue line represents the path of the tip 

traveling to the right, and the red line represents the path traveling to the left.  The red 

line clearly shows the geometry of the step height, whereas the blue line shows how the 

speed, gain, and normal force affect the tip’s tracking ability.  In relation to the ripple 

pattern, any topographical step height would be continually propagated as the tip 

encounters the edge of a step height only when moving up the slope; while moving down 

the slope the tip does not react quickly enough to cause plastic deformation to both sides 

of the step height.   

Another effect seen in the scan lines taken is “ringing” of the force as the piezo 

tries to find contact with the sample.  Figure 2.22b shows this effect in the red line that 

records the force in the scan from left to right.  When it encounters the “drop off” step 

height seen in Figure 2.22a, the force oscillates as it tries to maintain constant force on 

the sample but is out of contact. 
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Figure 2.22.  Scan lines showing the inertial effects of the tool tip during scanning. a) the 

                     overshoot of a step height moving right to left and b) the ringing effect in  

                     the normal force. 

 

2.4.4 Forward and Reverse Scan Lines: Horizontal Shift  

 

To gain a better understanding of the tip’s motion and reaction to topographical 

changes, graphs of horizontal shifts were taken to observe any dependencies. Figure 2.23 

shows the amount of horizontal shift that occurred on a sample before rippling occurred, 

and then again after rippling had occurred.  The horizontal shift is much greater on the 

unrippled surfaces, most likely due to inertia effects.  It was also of interest to observe if 

different parts of the scan line experienced different levels of horizontal shift.  
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 Figure 2.24 shows the shift taken at several different points along the sample 

(high points, low points, relatively un-sloped points) and the dependence of the shift on 

the scan rate.  All areas along the scan show approximately the same level of shift, even 

as the scan rate increases. 

 

 
Figure 2.23.  Horizontal shift dependence on scan rate and the inertial effect in the 

                     preliminary scan line as compared to a rippled scan line. 
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Figure 2.24.  The horizontal shift in the scan line and its increase with scan rate taken at 

                     different points in the scan line. 

 

 

2.4.5 KBr Single Crystal Mechanical Properties 

 

 An initial theory on the reason for ripple formation was that the tool tip was 

causing dislocations generation within the crystal.  Mechanical properties of KBr were 

obtained to study the plausibility of the tip providing enough force for causing 

dislocations.  Both quasi static and partial unload indents (Figure 2.25 and 2.26) were 

performed to gain information about KBr’s elastic modulus and hardness (Figure 2.27 

and 2.28).  The indentation data is interpreted by using the unloading slopes obtained 

from indentation (Figure 2.25 and 2.26) to achieve values for the hardness of the material 

(Figure 2.27 and 2.28).  The unloading slope is dP/dh, and subsequent hardness values 

can be obtained from the slope values. 
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Figure 2.25.  Partial unloading data for KBr. 

 

 
 

Figure 2.26.  Quasi static indentions in KBr. 
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Figure 2.27.  KBr mechanical properties corresponding to the partial unloading indents 

                     and multiple indents. “hc” is the contact depth. 

 

 
Figure 2.28.  KBr mechanical properties corresponding to the quasi static indents. 
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The higher values for hardness and modulus seen where the indentations were 

shallow is commonly attributed to “indentation size effect” (ISE).  Measurement 

uncertainty from the small size of the indent causes the higher values obtained for 

hardness [60].  ISE is also related to the material, not just the ability to measure. The 

relatively constant value for modulus and hardness after a depth of around 100 nm is 

expected considering KBr is a bulk single crystal material.  Other materials, particularly 

thin films, often show substrate effects that influence the hardness and modulus results so 

the data does not look like a horizontal line after a certain depth. 

 Zooming in on the lower left side portion of Figure 2.28 shows the load controlled 

indent data for KBr (Figure 2.29).  The horizontal portions of the graph show where a 

dislocation was emitted and the tip dropped further down into the sample.  If the tip is 

able to produce forces like this during scanning, dislocations could be influencing pattern 

formation. 

 
 

Figure 2.29.  Load controlled indents showing load excursions associated with 

                     dislocations being emitted. 
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 After gathering data on the mechanical properties of KBr, it became necessary to 

have an accurate tip area to make appropriate calculations.  Figure 2.30 is an AFM image 

of a tip, which when cross sectioned, produces Figure 2.31, and the area of the tip can be 

found. 

 

 
 

Figure 2.30.  An AFM image of a tip. 

 

 
Figure 2.31.  a) Cross section geometry of a tip, b) zoomed in to find tip diameter. 
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Based on the KBr load-displacement data, it is possible to create dislocations at 2 

N normal scanning force, especially since KBr is a low hardness material.  Load-

displacement discontinuities with regard to normal force were seen during 

nanoindentation experiments at 5 nm of depth with a 20 N normal load (Figure 2.29). 

With the addition of a shear stress component during scanning, smaller normal load of 2 

N could be enough to induce dislocations, as only 2.5 GPa shear stress is required. 

 

2.4.6 Chatter 

 

Another possibility of the formation of ripples is that the tool itself causes either 

forced or self-excited vibration (equivalent of chatter observed at the macroscopic scale) 

[64]. All ripple experiments over an area were performed with a low gain setting, a 

parameter that affects how well the Proportional, Integral, Derivative (PID) controller 

forces the tip to “track” the surface topography. The tip deepens low surface points with 

each consequent contact. The transducer resonance frequency is around 130 Hz, orders of 

magnitude higher than the image scan rate of 1-3 Hz. The higher the scan rate, the more 

likely the tool will strike the surface at the same rate of the natural frequency of some 

other system parts, whether it be the piezo, tip holder, etc., contributing to the formation 

of ripples. Figure 2.29 is a macroscale example of how speed and force are influential in 

producing chatter. There are relative “sweet spots” where no chatter is seen, and this 

parallels experiments where changing scanning speed, normal load, or gain settings did 

not produce rippling. During the wear experiments the tip maintains contact with the 

surface until the desired number of passes programmed has been reached.  Similarly, in 

milling and turning macroscale processes, where the cutting tool is not removed from the 

surface, chatter can be seen in the regeneration of waviness continued by the periodic 
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force induced by the already wavy surface. Mode coupling is another source of self-

excited vibration that produces chatter when these vibrations are in planes positioned 

perpendicular to the cut, or wear path in these experiments.  However, consequences of 

the generally small size of the test area dictate that bulk material physics do not 

dominate; instead, surface forces play the main role in determining characteristics of the 

materials reaction [4].  From the ripple data of Figure 2.2, the tip speed is 24 m/s, and a 

ripple occurs every 0.63 m.  This is a ripple frequency of 39 Hz, much lower than the 

transducer resonance frequency of 130 Hz, so chatter is not a well supported possibility 

for ripple formation. 

 

Figure 2.32.  An example of how chatter varies with speed and normal load applied.   
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CHAPTER 3 

 

WEAR TESTING IN VARYING ENVIRONMENTS 

 

3.1 Introduction to Environmental Wear Dependence  

 

A focus of this chapter is wear testing in a liquid environment.  It has been shown 

in practical applications that humidity can have an impact on wear of metals [66].   

Conflicting situations have been observed, where some experiments show an increase in 

wear rate with increasing humidity, while others experience a decrease in wear rate with 

an increase in humidity [7, 8, 67].   

Experiments performed on 3 m sputtered gold samples showed 3 times higher 

wear rate in water than at ambient humidity (approximately 55%).  These experiments 

were performed in the Hysitron Nanoindenter and results are in section 3.3.  It was of 

interest to repeat this experiment in the Atomic Force Microscope to observe if the same 

results would be achieved.  This would elucidate if the results were a feature of the 

scanning properties of the Nanoindenter, or a property of the gold sample. 

 

3.2 Experimental Details of Environmental Testing 

For wear testing in the AFM, contact mode tips were used.  These are dual 

cantilevered to supply the extra strength for the higher loads of contact scanning.  

Tapping mode tips mainly used for sensitive cellular material have a single cantilever 

geometry (Figure 3.1a). For contact mode scanning in water, some adjustments need to 

be made for testing with a fluid cell using AFM.  Most fluid cells are designed for 
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biological samples, using a large triangular compliant tip.  This provides a large area for 

the laser to reflect off and helps with aligning the detector.  In the wear experiments it is 

necessary to use a stiffer cantilever that has a smaller surface area.  To be able to get a 

large enough laser signal in the detector, the tip must be positioned slightly tilted to direct 

the laser beam into the detector.  The glass over the fluid cell also refracts the laser 

signal, producing an approximate 30% drop in total signal with the glass in place.  

Another issue in working with AFM is that the laser signal can be scattered by the sample 

surface and further deteriorate the signal strength [29]. 

 

Figure 3.1.  Schematic of a) tapping mode tip and b) contact mode tip (dual cantilever). 

Sputtered gold films, 3 m thick were cleaned with acetone and methanol before 

conducting AFM and Hysitron wear tests.  The Hysitron experiments were preformed 

with a conical diamond tip (1 m tip radius).  The AFM tip was a silicon nitride 

cantilever with a radius of 100 nm. The Hysitron experiments were performed with a 
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normal load of 10 N, while the AFM experiments were performed at 2 N.  Test 

parameters were kept the same when testing in ambient atmosphere (55% humidity) or in 

a distilled water environment.  Test area in the Hysitron was 10x10 m
2
 and 1x1 m

2
 in 

the AFM. 

 

3.3 Wear in Water Compared to Ambient Conditions 

 Figure 3.2 shows results of wear testing in the ambient environment in the AFM.  

From the topography and cross section of the gold, it is apparent that there is minimal 

wear, on the order of 5 nm.  There is surface modification or smoothing of asperities that 

appears in the ambient environment experiments.  Results obtained in the Hysitron 

Triboindenter also displayed minimal wear on the order of approximately 15 nm (Figure 

3.4. 

 
Figure 3.2.  Sputtered gold film tested in ambient environment in AFM at 2 N normal 

                   load, 10 Hz, 1x1 m
2
 scan area. a) Initial surface with a square outlining the 

                   wear test area; b) Surface after 30 scans with the same identifying square; c)  

                   Cross-section of b showing depth reached in the scan area. 

 

Figure 3.3 shows the results of the wear tests performed in the presence of water 

in the AFM.  Compared to the previous ambient experiment, the test in water was 

performed for the same number of scans and produced a depth of 20 times greater than in 
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the ambient experiments. Depth values were taken at the center of each wear scan to 

accurately obtain the depth over different images. Experiments performed in the Hysitron 

Tribolindenter were performed for half the number of scans as the ambient experiment, 

and similarly to AFM results, produced 10 times higher wear rate.  The wear tests 

performed in the Hysitron can be seen in Figures 3.4 and 3.5. 

 

Figure 3.3.  Sputtered gold film on silicon scanned over a 1x1 m
2
 area in AFM for 30  

                   scans at 10 Hz, 2 N normal load in the presence of water.  a) Initial surface; 

                   b) surface after 30 scans; c) cross-section showing depth reached in the scan 

                   area. 

 

Figure 3.4.  a) Wear area and b) Wear track topography of a gold film after 200 wear 

                   cycles at 10 N normal load with a blunt conical tip in air. Courtesy of  

                   Xialou Pang, University of South Florida. 
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Figure 3.5. a) Wear area and b) Wear track of a gold sputtered film after 100 wear cycles 

                  at 10 N normal load with a blunt conical tip in water. Courtesy of Xialou  

                  Pang, University of South Florida. 

 

 Figure 3.6 shows the wear depth versus the number of scans for both wet and 

ambient conditions from the AFM experiments. It would be ideal to have more data and 

continue the test for a larger number of scans, but experimenting in water without a fluid 

cell requires the test to be performed before the water on the sample evaporates; only 

allowing a small number of scans.  The addition of water to try to avoid this short 

scanning time proved only to make the tip lose contact with the sample due to the 

capillary forces of the added water.  This loss of contact provides an offset and the test 

can not be continued in the exact same area. 
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Figure 3.6.  Data obtained from experiments performed on the AFM in water and ambient 

                   conditions. 

 

This drastic increase in material removal observed in the experiments performed 

in the presence of water could possibly be due to moisture-assisted grains fracture and 

pull-off, with more material going into solution and increasing friction. An additional test 

preformed was scanning a single line repeatedly in the AFM to obtain an idea of the wear 

rate corresponding to the depth. An example of this can be seen in Figure 3.7a.  The 

depth of scan lines (Figure 3.8) possibly plateaus at a certain depth even when the 

number of line scans continually increases (more data would be needed to conclusively 

describe a plateau). With constant normal load the tip contact area is increasing during 

abrasive wear, until the contact pressure is reduced below the level of gold hardness, at 

which point the wear process transitions from abrasive to frictional wear. Figure 3.7a 

displays 2 single scan line wear tracks, the one on the left tested for less than 500 scans 

and the right scan tested for less than 250 scans.  Other scan parameters were kept 

equivalent at 200 nm scan length, 20 Hz speed, 0.1 integral gain value, and 2000 nN.  



www.manaraa.com

 68 

 

Figure 3.7. a) An example of the single scan line wear performed on the single crystal 

                  gold and b) the profile view showing the depth of scan lines. 

 

 

 

 

Figure 3.8. Single scan line wear data portraying the possible “plateau effect” after initial 

                  rapid wear. 
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As previously mentioned, most wear tests performed in the ambient environment 

only smoothed out asperities on the surface of the gold, as can be seen in the 

progressively scanned images in Figure 3.9.   

 

 

 

Figure 3.9.  200 nm thick evaporated gold film on mica. a) Initial surface topography. b) 

                   After 10 scans at 10 Hz, 2000 nN Normal load, 1x1 m
2
 scan area; c) After  

                   10 additional scans; d) Initial deflection image of the scanned area (1x1 m
2
) 

                   and e) after 10 scans, and f) after 10 additional scans. 

 

3.4 AFM Wear of KBr 

The ability to reproduce the ripple pattern seen in the UHV AFM in the ambient 

Hysitron nanoindenter inspired experiments to reproduce ripples in the ambient AFM.  

However, these wear tests produced typical wear areas, as seen in Figure 3.10 and 3.11. 



www.manaraa.com

 70 

Rippling was usually initiated in the Hysitron at cleavage steps on the sample, and wear 

testing in the AFM only smoothed the cleavage steps, as seen in the progressive images 

of Figure 3.11. 

 

    

 

Figure 3.10. KBr scanned at 1000 nN, 10 Hz, over a 3x3 m
2
 area and b) wear area after 

                    25 scans. 

 

 

 

Figure 3.11. Wear test of KBr tested at 500 nN at 10 Hz, over a 2x2 m
2
 area. a) The 

                     initial image b) a zoomed in image during scanning after 20 scans and c) the 

                     same area after 150 total scans. 
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A wear test of KBr and corresponding profile of the wear area can been seen in 

Figures 3.12 and 3.13.  The profile in Figure 3.13 shows the large pile up structures that 

were formed.  The pile up structures in this experiment are very large, due to the material 

being plastically pushed to the edges of the wear scan.  In experiments that produced the 

ripple pattern, the pile up structures were not as large, because the material was spread 

out over the wear area forming the ripples. 

 

Figure 3.12.  a) Initial KBr surface before being scanned at 15 Hz, 1000 nN, over a 1x1 

                     m
2
 area for 10 scans. b) Final image showing wear area.  
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Figure 3.13.  Profile of KBr wear test performed in the AFM.  Substantial pile up features 

                     were produced, but no ripple pattern formed. 

 

 

3.5 Surface Contaminants 

On particularly humid days (> 60%) the surface of NaCl appeared to be 

contaminated, possibly with water droplets or debris from the air (Figure 3.14). 
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Figure 3.14.  A 15x15 m
2
 image of NaCl showing the surface contaminants. 

  

The damage in the center of Figure 3.13 is due to the tip initially making contact 

with the sample in that area.   

    

 

 

Figure 3.15.  Zoomed in  8x8 m
2
 image of the contaminants, a) Topography image b) 

                     Error signal image shown for clarity. 
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 A wear test was performed to determine whether or not the contaminants could 

simply be swept away, or if it was attached to the crystal.  As Figure 3.16 shows, the 

contaminants were not simply swept away, but appeared slightly smoothed out after 32 

scans at 1500 nN normal load. 

 

Figure 3.16. Scanning a 5x5 m
2
 area at 7 Hz speed and 1500 nN normal load for 32 

                    scans. a) Initial topography b) final image. 

 

 To ensure that this was not a property of the salt crystal, a 3 m thick sputtered 

gold sample was scanned and similar results were obtained (Figure 3.17). 
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Figure 3.17. 3 m sputtered gold displaying contaminants. These are microstructure 

                    features. 

 

 After the NaCl and gold surface contaminants were observed (Figure 3.15-3.17), 

the sample was switched to a freshly cleaved KBr sample that did not display any of the 

surface texture.  However, upon testing, it appeared that all 3 tips were in contact with the 

sample, or significant amounts of the surface contaminants had adhered to the tips 

making them large enough to come in contact with the sample. Figure 3.18 is an example 

of the tip set up, and Figure 3.19 displays an example of the three wear tracks. 
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Figure 3.18.  Examples of the 3 tip set up. 

 

 

Figure 3.19.  KBr wear track showing 3 wear tracks on the right side.  

 

 The sample was then scanned at an angle to observe if the situation was 

directionally dependent.  Figure 3.20 shows that even scanning at 45 degrees the other 

tips are still marring the surface. 
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Figure 3.20.  KBr surface proving that the “3 tip” image was not vertically dependent, as 

                     the lines appear when scanning is oriented at 45 degrees.  

 

 Eventually, the square wear area became distorted (Figure 3.21). 

 

 

Figure 3.21.  An example of the distortion seen during the multiple tip engagement 

                     behavior.  The wear track should show a perfectly square outline.   
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3.6 Single Crystal Gold Wear 

In scanning single crystal gold, the wear test served to remove layers, as seen in 

Figure 3.22.   

 

Figure 3.22. Single crystal gold wear test at 5 Hz speed, 200 nN normal load at a gain of 

                    0.5 over a 1x1 m
2
 area. A) Original surface and B) Surface after 10 scans. 

 

 Performing the wear test on single crystal gold produced higher wear, as can be 

seen in the progressive images taken in Figures 3.24 and 3.25.  This test was performed at 

750 nN at 10 Hz scan speed.  Approximately half way through the 350 scans, a ripple 

pattern appeared in the test area (Figure 3.23).  These ripples did not propagate much, as 

Figure 3.21a and 3.21b were taken 50 scans apart.   
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Figure 3.23.  Appearance of what could be small ripples propagating from the upper right 

                     corner of the scan area. a) after 230 scans b) after 280 scans. 

 

 

 

Figure 3.24.  Progressive images of single crystal gold throughout a wear test. 
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Figure 3.25. The final image of the single crystal gold wear test. 

 

 The single crystal gold did not hold up well in tests at higher normal loads for 

many scans.  The following figures display the results of a 1000 nN normal load scan for 

10 scans. 

 

Figure 3.26. a) Initial error signal image and b) Initial topography image. 
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Figure 3.27. a) Error signal image showing the significant surface damage to the single 

                    crystal gold after 10 scans at 2 Hz speed with 1000 nN normal load and b) 

                    topography image. 

 

 The single crystal gold is inherently softer than the sputtered gold, as it has no 

grain boundaries to stop dislocations from propagating.   
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CHAPTER 4 

 

ENVIRONMENTAL EFFECTS ON SCRATCHING 

 

4.1 Introduction to Scratching 

 

 The motivation for experimenting with single pass scratches on gold was to 

observe if there was any correlation between the wear experiments performed both on the 

Hysitron Nanoindenter and the AFM.  More specifically, to see if the same result of a 

higher wear rate, or in this case, scratch depth is achieved in experiments performed in 

water versus the ambient environment.  It was also of interest to observe any differences 

when continually scanning over an area, versus a single pass scratch line. 

 

4.2 Experimental Details of Scratching and Analysis 

 

 Tabor Shear/Scratch Tester was used in the following experiments on gold.  The 

conical diamond tip was used for testing.  This tip has a point diameter of 178 m.  The 

gold sample for testing was a 3 m sputtered gold.    

As the machine operates similar to a record player, some modifications had to be 

made for experiments to be carried out on smaller samples and to avoid putting holes in 

the center of the sample.  A standard CD fits into the sample holder and the gold sample 

was mounted using cyanoacrylate (superglue).   An example of this construction can be 

seen in Figure 4.1.  To allow experiments to be performed in the presence of water, a 

plastic case was modified to fit on the scratch tester; equipped with a rubber gasket to 
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prevent leakage into the machine.  With this contraption, the CD with sample applied can 

be set into the plastic case and water can be poured in without damaging the machine. 

 

Figure 4.1.  The modifications performed to allow testing of small samples in the 

                    presence of water. 

 

Ten single scratch scans were performed on the sample, 5 first in ambient 

conditions, and later 5 submerged in water.  None of the additional weights available 

were applied to the support beam, making the effective load on the tip from the support 

beam itself 126 g.  

 A profilometer was used for analyzing the wear track after the experiment.  The 

load of the stylus was 1 mg scanning at a speed of 50 m/s. 

 

 

 

 



www.manaraa.com

 84 

4.3 Scratch Results  

 

Before the profilometer scans were taken, images of the wear tracks were taken 

through an optical microscope.  Figure 4.2 displays scans taken in the ambient 

environment.  Figure 4.3 displays the scratches taken submerged in water. 

 
 

Figure 4.2.  a), b), c) Single pass scratch lines performed in the ambient environment. 
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Figure 4.3.  a), b), c) Single pass scratch lines performed submerged in water. 

  

The texture of the scratches and outside pile up structures appears to be rougher in 

the wet scan images.  There appears to be more microchipping in the area surrounding the 

scratch. 

Profilometer scans provide quantitative data about the depth of the scan, as seen 

in Figures 4.4 and 4.5.   
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Figure 4.4.  Depth profile of 3 scratches performed in ambient conditions.  The average 

                  depth of the scratches is 2 m. 

 

 
Figure 4.5  Depth profile of 2 scratches performed submerged in distilled water with all 

                  other parameters kept identical to experiments performed in ambient 

                  conditions.  The average depth is 3 m. 
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4.4 Scratch Analysis 

 

 The complicated nature of the wear process also extends into scratching, as there 

can be pure ploughing, sliding, fracture, delamination, or a combination of effects 

occurring.  Figure 4.6 provides a schematic of some of the scratching effects. 

 
Figure 4.6.  A schematic of the stylus traveling along a sample.  Reproduced with 

                   permission from Holmberg, VTT, Netherlands. 

 

 Many material properties contribute to the behavior of a material subjected to 

scratching.  It has been generally accepted that hardness correlates with wear resistance, 

however for coatings, the interfacial shear strength has been found to have a stronger 

effect [48].  The material’s hardness is still a good indicator of the amount of plastic 

grooving, but the shear strength will predict chipping. 

 The wear mechanism for sputtered coatings has been found to be mainly 

microchipping and little coating detachment.  This makes the shear strength even more 

influential to the gold’s behavior. Tabor derived an equation using the shear strength to 
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obtain the frictional force.  From Tabor, the friction force can be divided into adhesion 

and ploughing: 

                                                    
21

pAAF  (9) 

 

In this equation for the frictional force (F),  is the interfacial shear strength, A1 is 

the projected contact area, p is the material flow stress represented by its hardness value, 

and A2 is the projected cross sectional area of the scratch track.  

Equations for the ploughing and adhesion coefficients (respectively) of friction 

have been derived by Bull [46]: 
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 Where r is the indenter radius and d is the track width of the scratch. m is the 

total coefficient of friction. As these experiments were performed at fairly low depths, the 

main component of friction should be due to the ploughing friction force according to 

previous experiments performed by others [46]. Scratches at relatively low depths means 

a smaller contact area; therefore less area for the adhesion component to play a role in 

friction. From the experimental data, the r value is 89 m, and the track width, d = 25 m 

for ambient air and d = 30 m in water.  The ploughing coefficient is the main 
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contributor to the coefficient of friction in both cases.  For the ambient air experiments: 

p = 90.9 and s = 0.213 and for the scratches submerged in water:  p = 69.2 s = 0.214. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

 

This work has investigated ripple pattern formation during wear experiments on 

the micro and nanoscales.  Experiments have also focused on the environmental effects of 

wear and scratch testing. 

Successful reproduction of ripples produced in the UHV AFM was performed in 

the Hysitron nanoindenter and Park Scientific AFM on samples of KBr, single crystal 

Aluminum, sputtered and single crystal gold. The ripple’s periodicity increases with the 

number of passes made on the sample as observed in other ripple pattern experiments as 

well. Many mechanisms have been studied as the possible cause of ripple pattern 

initiation, such as chatter, stick slip, and dislocation dynamics. The stick slip mechanism 

has been proposed as the primary source of ripple formation, and the exact cause is under 

investigation.  

The addition of water to a wear experiment on gold produced considerably deeper 

wear areas than its ambient counterpart. Topography modification appears to be the main 

mechanism of ambient wear tests at the nanoscale, whereas much higher wear rate and 

nanoripples are observed in water. Moisture is influencing the material removal with 

increased wear rate. Most likely this moisture is assisting grain fracture and pull-off.  In 
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scratch testing on sputtered gold, the depth of scratch was found to be deeper in the 

presence of water than in ambient humidity, similar to the wear experiments. 

 

5.2 Future Work 

 Much of this research was aimed at determining the types of materials and 

environmental conditions that would support pattern formation. Additionally, the material  

response to wear testing was determined.  A valuable asset to the research surrounding 

the pattern formation would be a dynamics model of the system during scanning to 

observe what combination of parameters initiate the ripple pattern.  Not only would 

modeling be useful in further understanding the pattern formation, but also to understand 

the wear process, and how it changes over time.   

 In terms of environmental effects, the development of a system to be able to test 

in a dry nitrogen (N2) purged environment might elucidate interesting correlations 

between wear and relative humidity.  It would also be of interest to observe if the 

viscosity of a liquid added to a wear test influenced the wear rate, or scratch depth at the 

micro and nanoscales.  The behavior of materials at this reduced scale needs to be well 

understood before the potential of small scale devices can be realized. 
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